Computer Science > Computation and Language
[Submitted on 19 Sep 2021]
Title:Towards Zero-Label Language Learning
View PDFAbstract:This paper explores zero-label learning in Natural Language Processing (NLP), whereby no human-annotated data is used anywhere during training and models are trained purely on synthetic data. At the core of our framework is a novel approach for better leveraging the powerful pretrained language models. Specifically, inspired by the recent success of few-shot inference on GPT-3, we present a training data creation procedure named Unsupervised Data Generation (UDG), which leverages few-shot prompts to synthesize high-quality training data without real human annotations. Our method enables zero-label learning as we train task-specific models solely on the synthetic data, yet we achieve better or comparable results from strong baseline models trained on human-labeled data. Furthermore, when mixed with labeled data, our approach serves as a highly effective data augmentation procedure, achieving new state-of-the-art results on the SuperGLUE benchmark.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.