Computer Science > Computation and Language
[Submitted on 19 Sep 2021]
Title:Unified and Multilingual Author Profiling for Detecting Haters
View PDFAbstract:This paper presents a unified user profiling framework to identify hate speech spreaders by processing their tweets regardless of the language. The framework encodes the tweets with sentence transformers and applies an attention mechanism to select important tweets for learning user profiles. Furthermore, the attention layer helps to explain why a user is a hate speech spreader by producing attention weights at both token and post level. Our proposed model outperformed the state-of-the-art multilingual transformer models.
Submission history
From: Ipek Baris Schlicht [view email][v1] Sun, 19 Sep 2021 21:53:23 UTC (504 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.