Electrical Engineering and Systems Science > Signal Processing
[Submitted on 19 Sep 2021]
Title:A Data-Driven Convergence Bidding Strategy Based on Reverse Engineering of Market Participants' Performance: A Case of California ISO
View PDFAbstract:Convergence bidding, a.k.a., virtual bidding, has been widely adopted in wholesale electricity markets in recent years. It provides opportunities for market participants to arbitrage on the difference between the day-ahead market locational marginal prices and the real-time market locational marginal prices. Given the fact that convergence bids (CBs) have a significant impact on the operation of electricity markets, it is important to understand how market participants strategically select their CBs in real-world. We address this open problem with focus on the electricity market that is operated by the California ISO. In this regard, we use the publicly available electricity market data to learn, characterize, and evaluate different types of convergence bidding strategies that are currently used by market participants. Our analysis includes developing a data-driven reverse engineering method that we apply to three years of real-world data. Our analysis involves feature selection and density-based data clustering. It results in identifying three main clusters of CB strategies in the California ISO market. Different characteristics and the performance of each cluster of strategies are analyzed. Interestingly, we unmask a common real-world strategy that does not match any of the existing strategic convergence bidding methods in the literature. Next, we build upon the lessons learned from the existing real-world strategies to propose a new CB strategy that can significantly outperform them. Our analysis includes developing a new strategy for convergence bidding. The new strategy has three steps: net profit maximization by capturing price spikes, dynamic node labeling, and strategy selection algorithm. We show through case studies that the annual net profit for the most lucrative market participants can increase by over 40% if the proposed convergence bidding strategy is used.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.