Nonlinear Sciences > Pattern Formation and Solitons
[Submitted on 20 Sep 2021 (v1), last revised 4 Jan 2022 (this version, v2)]
Title:Data-driven vector localized waves and parameters discovery for Manakov system using deep learning approach
View PDFAbstract:An improved physics-informed neural network (IPINN) algorithm with four output functions and four physics constraints, which possesses neuron-wise locally adaptive activation function and slope recovery term, is appropriately proposed to obtain the data-driven vector localized waves, including vector solitons, breathers and rogue waves (RWs) for the Manakov system with initial and boundary conditions, as well as data-driven parameters discovery for Manakov system with unknown parameters. The data-driven vector RWs which also contain interaction waves of RWs and bright-dark solitons, interaction waves of RWs and breathers, as well as RWs evolved from bright-dark solitons are learned to verify the capability of the IPINN algorithm in training complex localized wave. In the process of parameter discovery, routine IPINN can not accurately train unknown parameters whether using clean data or noisy data. Thus we introduce parameter regularization strategy with adjustable weight coefficients into IPINN to effectively and accurately train prediction parameters, then find that once setting the appropriate weight coefficients, the training effect is better as using noisy data. Numerical results show that IPINN with parameter regularization shows superior noise immunity in parameters discovery problem.
Submission history
From: Yong Chen Dr. [view email][v1] Mon, 20 Sep 2021 02:04:14 UTC (4,718 KB)
[v2] Tue, 4 Jan 2022 12:45:12 UTC (5,703 KB)
Current browse context:
nlin.PS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.