Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Sep 2021 (v1), last revised 22 Sep 2022 (this version, v2)]
Title:TempNet -- Temporal Super Resolution of Radar Rainfall Products with Residual CNNs
View PDFAbstract:The temporal and spatial resolution of rainfall data is crucial for environmental modeling studies in which its variability in space and time is considered as a primary factor. Rainfall products from different remote sensing instruments (e.g., radar, satellite) have different space-time resolutions because of the differences in their sensing capabilities and post-processing methods. In this study, we developed a deep learning approach that augments rainfall data with increased time resolutions to complement relatively lower resolution products. We propose a neural network architecture based on Convolutional Neural Networks (CNNs) to improve the temporal resolution of radar-based rainfall products and compare the proposed model with an optical flow-based interpolation method and CNN-baseline model. The methodology presented in this study could be used for enhancing rainfall maps with better temporal resolution and imputation of missing frames in sequences of 2D rainfall maps to support hydrological and flood forecasting studies.
Submission history
From: Muhammed Sit [view email][v1] Mon, 20 Sep 2021 03:58:52 UTC (958 KB)
[v2] Thu, 22 Sep 2022 04:14:44 UTC (700 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.