Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Sep 2021]
Title:Explaining Convolutional Neural Networks by Tagging Filters
View PDFAbstract:Convolutional neural networks (CNNs) have achieved astonishing performance on various image classification tasks, but it is difficult for humans to understand how a classification comes about. Recent literature proposes methods to explain the classification process to humans. These focus mostly on visualizing feature maps and filter weights, which are not very intuitive for non-experts in analyzing a CNN classification. In this paper, we propose FilTag, an approach to effectively explain CNNs even to non-experts. The idea is that when images of a class frequently activate a convolutional filter, then that filter is tagged with that class. These tags provide an explanation to a reference of a class-specific feature detected by the filter. Based on the tagging, individual image classifications can then be intuitively explained in terms of the tags of the filters that the input image activates. Finally, we show that the tags are helpful in analyzing classification errors caused by noisy input images and that the tags can be further processed by machines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.