Computer Science > Information Theory
[Submitted on 17 Sep 2021]
Title:Deep Reinforcement Learning Based Multidimensional Resource Management for Energy Harvesting Cognitive NOMA Communications
View PDFAbstract:The combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency and spectral efficiency of the upcoming beyond fifth generation network (B5G), especially for support the wireless sensor communications in Internet of things (IoT) system. However, how to realize intelligent frequency, time, and energy resource allocation to support better performances is an important problem to be solved. In this paper, we study joint spectrum, energy, and time resource management for the EH-CR-NOMA IoT systems. Our goal is to minimize the number of data packets losses for all secondary sensing users (SSU), while satisfying the constraints on the maximum charging battery capacity, maximum transmitting power, maximum buffer capacity, and minimum data rate of primary users (PU) and SSUs. Due to the non-convexity of this optimization problem and the stochastic nature of the wireless environment, we propose a distributed multidimensional resource management algorithm based on deep reinforcement learning (DRL). Considering the continuity of the resources to be managed, the deep deterministic policy gradient (DDPG) algorithm is adopted, based on which each agent (SSU) can manage its own multidimensional resources without collaboration. In addition, a simplified but practical action adjuster (AA) is introduced for improving the training efficiency and battery performance protection. The provided results show that the convergence speed of the proposed algorithm is about 4 times faster than that of DDPG, and the average number of packet losses (ANPL) is about 8 times lower than that of the greedy algorithm.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.