Electrical Engineering and Systems Science > Signal Processing
[Submitted on 16 Sep 2021]
Title:The Devil Is in the Details: An Efficient Convolutional Neural Network for Transport Mode Detection
View PDFAbstract:Transport mode detection is a classification problem aiming to design an algorithm that can infer the transport mode of a user given multimodal signals (GPS and/or inertial sensors). It has many applications, such as carbon footprint tracking, mobility behaviour analysis, or real-time door-to-door smart planning. Most current approaches rely on a classification step using Machine Learning techniques, and, like in many other classification problems, deep learning approaches usually achieve better results than traditional machine learning ones using handcrafted features. Deep models, however, have a notable downside: they are usually heavy, both in terms of memory space and processing cost. We show that a small, optimized model can perform as well as a current deep model. During our experiments on the GeoLife and SHL 2018 datasets, we obtain models with tens of thousands of parameters, that is, 10 to 1,000 times less parameters and operations than networks from the state of the art, which still reach a comparable performance. We also show, using the aforementioned datasets, that the current preprocessing used to deal with signals of different lengths is suboptimal, and we provide better replacements. Finally, we introduce a way to use signals with different lengths with the lighter Convolutional neural networks, without using the heavier Recurrent Neural Networks.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.