Computer Science > Information Theory
[Submitted on 20 Sep 2021 (v1), last revised 12 Jan 2024 (this version, v3)]
Title:Maximum Sum-Rank Distance Codes over Finite Chain Rings
View PDF HTML (experimental)Abstract:In this work, maximum sum-rank distance (MSRD) codes and linearized Reed-Solomon codes are extended to finite chain rings. It is proven that linearized Reed-Solomon codes are MSRD over finite chain rings, extending the known result for finite fields. For the proof, several results on the roots of skew polynomials are extended to finite chain rings. These include the existence and uniqueness of minimum-degree annihilator skew polynomials and Lagrange interpolator skew polynomials. A general cubic-complexity sum-rank Welch-Berlekamp decoder and a quadratic-complexity sum-rank syndrome decoder (under some assumptions) are then provided over finite chain rings. The latter also constitutes the first known syndrome decoder for linearized Reed--Solomon codes over finite fields. Finally, applications in Space-Time Coding with multiple fading blocks and physical-layer multishot Network Coding are discussed.
Submission history
From: Umberto Martínez-Peñas [view email][v1] Mon, 20 Sep 2021 14:03:57 UTC (17 KB)
[v2] Tue, 18 Apr 2023 14:27:39 UTC (25 KB)
[v3] Fri, 12 Jan 2024 18:03:04 UTC (32 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.