Computer Science > Information Retrieval
[Submitted on 20 Sep 2021 (v1), last revised 22 Mar 2022 (this version, v2)]
Title:Recommender systems based on graph embedding techniques: A comprehensive review
View PDFAbstract:As a pivotal tool to alleviate the information overload problem, recommender systems aim to predict user's preferred items from millions of candidates by analyzing observed user-item relations. As for alleviating the sparsity and cold start problems encountered by recommender systems, researchers resort to employing side information or knowledge in recommendation as a strategy for uncovering hidden (indirect) user-item relations, aiming to enrich observed information (or data) for recommendation. However, in the face of the high complexity and large scale of side information and knowledge, this strategy relies for efficient implementation on the scalability of recommendation models. Not until after the prevalence of machine learning did graph embedding techniques be a concentration, which can efficiently utilize complex and large-scale data. In light of that, equipping recommender systems with graph embedding techniques has been widely studied these years, appearing to outperform conventional recommendation implemented directly based on graph topological analysis. As the focus, this article retrospects graph embedding-based recommendation from embedding techniques for bipartite graphs, general graphs and knowledge graphs, and proposes a general design pipeline of that. In addition, after comparing several representative graph embedding-based recommendation models with the most common-used conventional recommendation models on simulations, this article manifests that the conventional models can overall outperform the graph embedding-based ones in predicting implicit user-item interactions, revealing the comparative weakness of graph embedding-based recommendation in these tasks. To foster future research, this article proposes suggestions on making a trade-off between graph embedding-based recommendation and conventional recommendation in different tasks, and puts forward open questions.
Submission history
From: Yue Deng [view email][v1] Mon, 20 Sep 2021 14:42:39 UTC (1,556 KB)
[v2] Tue, 22 Mar 2022 15:43:52 UTC (2,085 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.