Mathematics > Optimization and Control
[Submitted on 20 Sep 2021]
Title:A Reinforcement Learning Approach to the Stochastic Cutting Stock Problem
View PDFAbstract:We propose a formulation of the stochastic cutting stock problem as a discounted infinite-horizon Markov decision process. At each decision epoch, given current inventory of items, an agent chooses in which patterns to cut objects in stock in anticipation of the unknown demand. An optimal solution corresponds to a policy that associates each state with a decision and minimizes the expected total cost. Since exact algorithms scale exponentially with the state-space dimension, we develop a heuristic solution approach based on reinforcement learning. We propose an approximate policy iteration algorithm in which we apply a linear model to approximate the action-value function of a policy. Policy evaluation is performed by solving the projected Bellman equation from a sample of state transitions, decisions and costs obtained by simulation. Due to the large decision space, policy improvement is performed via the cross-entropy method. Computational experiments are carried out with the use of realistic data to illustrate the application of the algorithm. Heuristic policies obtained with polynomial and Fourier basis functions are compared with myopic and random policies. Results indicate the possibility of obtaining policies capable of adequately controlling inventories with an average cost up to 80% lower than the cost obtained by a myopic policy.
Submission history
From: Anselmo Pitombeira-Neto [view email][v1] Mon, 20 Sep 2021 14:47:54 UTC (638 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.