Computer Science > Information Theory
[Submitted on 18 Sep 2021]
Title:Robust Optimization of Instantaneous Beamforming and Quasi-static Phase Shifts in an IRS-assisted Multi-Cell Network
View PDFAbstract:The impacts of channel estimation errors, inter-cell interference, phase adjustment cost, and computation cost on an intelligent reflecting surface (IRS)-assisted system are severe in practice but have been ignored for simplicity in most existing works. In this paper, we investigate a multi-antenna base station (BS) serving a single-antenna user with the help of a multi-element IRS in a multi-cell network with inter-cell interference. We consider imperfect channel state information (CSI) at the BS, i.e., imperfect CSIT, and focus on the robust optimization of the BS's instantaneous CSI-adaptive beamforming and the IRS's quasi-static phase shifts in two scenarios. In the scenario of coding over many slots, we formulate a robust optimization problem to maximize the user's ergodic rate. In the scenario of coding within each slot, we formulate a robust optimization problem to maximize the user's average goodput under the successful transmission probability constraints. The robust optimization problems are challenging two-timescale stochastic non-convex problems. In both scenarios, we obtain closed-form robust beamforming designs for any given phase shifts and more tractable stochastic non-convex approximate problems only for the phase shifts. Besides, we propose an iterative algorithm to obtain a Karush-Kuhn-Tucker (KKT) point of each of the stochastic problems for the phase shifts. It is worth noting that the proposed methods offer closed-form robust instantaneous CSI-adaptive beamforming designs which can promptly adapt to rapid CSI changes over slots and robust quasi-static phase shift designs of low computation and phase adjustment costs in the presence of imperfect CSIT and inter-cell interference. Numerical results further demonstrate the notable gains of the proposed robust joint designs over existing ones and reveal the practical values of the proposed solutions.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.