Computer Science > Machine Learning
[Submitted on 20 Sep 2021 (v1), last revised 23 Mar 2022 (this version, v2)]
Title:Reinforcement Learning for Finite-Horizon Restless Multi-Armed Multi-Action Bandits
View PDFAbstract:We study a finite-horizon restless multi-armed bandit problem with multiple actions, dubbed R(MA)^2B. The state of each arm evolves according to a controlled Markov decision process (MDP), and the reward of pulling an arm depends on both the current state of the corresponding MDP and the action taken. The goal is to sequentially choose actions for arms so as to maximize the expected value of the cumulative rewards collected. Since finding the optimal policy is typically intractable, we propose a computationally appealing index policy which we call Occupancy-Measured-Reward Index Policy. Our policy is well-defined even if the underlying MDPs are not indexable. We prove that it is asymptotically optimal when the activation budget and number of arms are scaled up, while keeping their ratio as a constant. For the case when the system parameters are unknown, we develop a learning algorithm. Our learning algorithm uses the principle of optimism in the face of uncertainty and further uses a generative model in order to fully exploit the structure of Occupancy-Measured-Reward Index Policy. We call it the R(MA)^2B-UCB algorithm. As compared with the existing algorithms, R(MA)^2B-UCB performs close to an offline optimum policy, and also achieves a sub-linear regret with a low computational complexity. Experimental results show that R(MA)^2B-UCB outperforms the existing algorithms in both regret and run time.
Submission history
From: Jian Li [view email][v1] Mon, 20 Sep 2021 21:40:12 UTC (367 KB)
[v2] Wed, 23 Mar 2022 20:48:33 UTC (368 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.