Computer Science > Machine Learning
[Submitted on 20 Sep 2021]
Title:SFFDD: Deep Neural Network with Enriched Features for Failure Prediction with Its Application to Computer Disk Driver
View PDFAbstract:A classification technique incorporating a novel feature derivation method is proposed for predicting failure of a system or device with multivariate time series sensor data. We treat the multivariate time series sensor data as images for both visualization and computation. Failure follows various patterns which are closely related to the root causes. Different predefined transformations are applied on the original sensors data to better characterize the failure patterns. In addition to feature derivation, ensemble method is used to further improve the performance. In addition, a general algorithm architecture of deep neural network is proposed to handle multiple types of data with less manual feature engineering. We apply the proposed method on the early predict failure of computer disk drive in order to improve storage systems availability and avoid data loss. The classification accuracy is largely improved with the enriched features, named smart features.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.