Computer Science > Machine Learning
[Submitted on 21 Sep 2021 (v1), last revised 18 Oct 2024 (this version, v3)]
Title:A Distance-based Anomaly Detection Framework for Deep Reinforcement Learning
View PDF HTML (experimental)Abstract:In deep reinforcement learning (RL) systems, abnormal states pose significant risks by potentially triggering unpredictable behaviors and unsafe actions, thus impeding the deployment of RL systems in real-world scenarios. It is crucial for reliable decision-making systems to have the capability to cast an alert whenever they encounter unfamiliar observations that they are not equipped to handle. In this paper, we propose a novel Mahalanobis distance-based (MD) anomaly detection framework, called \textit{MDX}, for deep RL algorithms. MDX simultaneously addresses random, adversarial, and out-of-distribution (OOD) state outliers in both offline and online settings. It utilizes Mahalanobis distance within class-conditional distributions for each action and operates within a statistical hypothesis testing framework under the Gaussian assumption. We further extend it to robust and distribution-free versions by incorporating Robust MD and conformal inference techniques. Through extensive experiments on classical control environments, Atari games, and autonomous driving scenarios, we demonstrate the effectiveness of our MD-based detection framework. MDX offers a simple, unified, and practical anomaly detection tool for enhancing the safety and reliability of RL systems in real-world applications.
Submission history
From: Hongming Zhang [view email][v1] Tue, 21 Sep 2021 00:09:03 UTC (30,828 KB)
[v2] Sat, 20 Aug 2022 04:20:28 UTC (16,463 KB)
[v3] Fri, 18 Oct 2024 17:32:27 UTC (6,914 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.