Computer Science > Machine Learning
[Submitted on 21 Sep 2021 (v1), last revised 14 Apr 2022 (this version, v2)]
Title:Ranking Feature-Block Importance in Artificial Multiblock Neural Networks
View PDFAbstract:In artificial neural networks, understanding the contributions of input features on the prediction fosters model explainability and delivers relevant information about the dataset. While typical setups for feature importance ranking assess input features individually, in this study, we go one step further and rank the importance of groups of features, denoted as feature-blocks. A feature-block can contain features of a specific type or features derived from a particular source, which are presented to the neural network in separate input branches (multiblock ANNs). This work presents three methods pursuing distinct strategies to rank features in multiblock ANNs by their importance: (1) a composite strategy building on individual feature importance rankings, (2) a knock-in, and (3) a knock-out strategy. While the composite strategy builds on state-of-the-art feature importance rankings, knock-in and knock-out strategies evaluate the block as a whole via a mutual information criterion. Our experiments consist of a simulation study validating all three approaches, followed by a case study on two distinct real-world datasets to compare the strategies. We conclude that each strategy has its merits for specific application scenarios.
Submission history
From: Anna Jenul [view email][v1] Tue, 21 Sep 2021 16:00:15 UTC (719 KB)
[v2] Thu, 14 Apr 2022 15:03:52 UTC (667 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.