Computer Science > Machine Learning
[Submitted on 21 Sep 2021 (v1), last revised 4 Oct 2021 (this version, v2)]
Title:Introduction to Neural Network Verification
View PDFAbstract:Deep learning has transformed the way we think of software and what it can do. But deep neural networks are fragile and their behaviors are often surprising. In many settings, we need to provide formal guarantees on the safety, security, correctness, or robustness of neural networks. This book covers foundational ideas from formal verification and their adaptation to reasoning about neural networks and deep learning.
Submission history
From: Aws Albarghouthi [view email][v1] Tue, 21 Sep 2021 16:57:01 UTC (2,465 KB)
[v2] Mon, 4 Oct 2021 18:38:55 UTC (1,752 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.