Mathematics > Statistics Theory
[Submitted on 22 Sep 2021 (v1), last revised 16 Feb 2022 (this version, v2)]
Title:Sparse Uniformity Testing
View PDFAbstract:In this paper we consider the uniformity testing problem for high-dimensional discrete distributions (multinomials) under sparse alternatives. More precisely, we derive sharp detection thresholds for testing, based on $n$ samples, whether a discrete distribution supported on $d$ elements differs from the uniform distribution only in $s$ (out of the $d$) coordinates and is $\varepsilon$-far (in total variation distance) from uniformity. Our results reveal various interesting phase transitions which depend on the interplay of the sample size $n$ and the signal strength $\varepsilon$ with the dimension $d$ and the sparsity level $s$. For instance, if the sample size is less than a threshold (which depends on $d$ and $s$), then all tests are asymptotically powerless, irrespective of the magnitude of the signal strength. On the other hand, if the sample size is above the threshold, then the detection boundary undergoes a further phase transition depending on the signal strength. Here, a $\chi^2$-type test attains the detection boundary in the dense regime, whereas in the sparse regime a Bonferroni correction of two maximum-type tests and a version of the Higher Criticism test is optimal up to sharp constants. These results combined provide a complete description of the phase diagram for the sparse uniformity testing problem across all regimes of the parameters $n$, $d$, and $s$. One of the challenges in dealing with multinomials is that the parameters are always constrained to lie in the simplex. This results in the aforementioned two-layered phase transition, a new phenomenon which does not arise in classical high-dimensional sparse testing problems.
Submission history
From: Bhaswar Bhattacharya [view email][v1] Wed, 22 Sep 2021 01:42:58 UTC (149 KB)
[v2] Wed, 16 Feb 2022 14:50:58 UTC (162 KB)
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.