Computer Science > Machine Learning
[Submitted on 22 Sep 2021 (v1), last revised 9 Jul 2022 (this version, v2)]
Title:MEPG: A Minimalist Ensemble Policy Gradient Framework for Deep Reinforcement Learning
View PDFAbstract:During the training of a reinforcement learning (RL) agent, the distribution of training data is non-stationary as the agent's behavior changes over time. Therefore, there is a risk that the agent is overspecialized to a particular distribution and its performance suffers in the larger picture. Ensemble RL can mitigate this issue by learning a robust policy. However, it suffers from heavy computational resource consumption due to the newly introduced value and policy functions. In this paper, to avoid the notorious resources consumption issue, we design a novel and simple ensemble deep RL framework that integrates multiple models into a single model. Specifically, we propose the \underline{M}inimalist \underline{E}nsemble \underline{P}olicy \underline{G}radient framework (MEPG), which introduces minimalist ensemble consistent Bellman update by utilizing a modified dropout operator. MEPG holds ensemble property by keeping the dropout consistency of both sides of the Bellman equation. Additionally, the dropout operator also increases MEPG's generalization capability. Moreover, we theoretically show that the policy evaluation phase in the MEPG maintains two synchronized deep Gaussian Processes. To verify the MEPG framework's ability to generalize, we perform experiments on the gym simulator, which presents that the MEPG framework outperforms or achieves a similar level of performance as the current state-of-the-art ensemble methods and model-free methods without increasing additional computational resource costs.
Submission history
From: Qiang He [view email][v1] Wed, 22 Sep 2021 07:30:52 UTC (2,044 KB)
[v2] Sat, 9 Jul 2022 00:12:30 UTC (2,030 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.