Computer Science > Machine Learning
[Submitted on 22 Sep 2021 (v1), last revised 25 Jul 2022 (this version, v2)]
Title:Bayesian Optimization with Clustering and Rollback for CNN Auto Pruning
View PDFAbstract:Pruning is an effective technique for convolutional neural networks (CNNs) model compression, but it is difficult to find the optimal pruning policy due to the large design space. To improve the usability of pruning, many auto pruning methods have been developed. Recently, Bayesian optimization (BO) has been considered to be a competitive algorithm for auto pruning due to its solid theoretical foundation and high sampling efficiency. However, BO suffers from the curse of dimensionality. The performance of BO deteriorates when pruning deep CNNs, since the dimension of the design spaces increase. We propose a novel clustering algorithm that reduces the dimension of the design space to speed up the searching process. Subsequently, a rollback algorithm is proposed to recover the high-dimensional design space so that higher pruning accuracy can be obtained. We validate our proposed method on ResNet, MobileNetV1, and MobileNetV2 models. Experiments show that the proposed method significantly improves the convergence rate of BO when pruning deep CNNs with no increase in running time. The source code is available at this https URL.
Submission history
From: Jiandong Mu [view email][v1] Wed, 22 Sep 2021 08:39:15 UTC (4,671 KB)
[v2] Mon, 25 Jul 2022 14:31:48 UTC (376 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.