Computer Science > Machine Learning
[Submitted on 22 Sep 2021]
Title:Decentralized Learning of Tree-Structured Gaussian Graphical Models from Noisy Data
View PDFAbstract:This paper studies the decentralized learning of tree-structured Gaussian graphical models (GGMs) from noisy data. In decentralized learning, data set is distributed across different machines (sensors), and GGMs are widely used to model complex networks such as gene regulatory networks and social networks. The proposed decentralized learning uses the Chow-Liu algorithm for estimating the tree-structured GGM.
In previous works, upper bounds on the probability of incorrect tree structure recovery were given mostly without any practical noise for simplification. While this paper investigates the effects of three common types of noisy channels: Gaussian, Erasure, and binary symmetric channel. For Gaussian channel case, to satisfy the failure probability upper bound $\delta > 0$ in recovering a $d$-node tree structure, our proposed theorem requires only $\mathcal{O}(\log(\frac{d}{\delta}))$ samples for the smallest sample size ($n$) comparing to the previous literature \cite{Nikolakakis} with $\mathcal{O}(\log^4(\frac{d}{\delta}))$ samples by using the positive correlation coefficient assumption that is used in some important works in the literature. Moreover, the approximately bounded Gaussian random variable assumption does not appear in \cite{Nikolakakis}. Given some knowledge about the tree structure, the proposed Algorithmic Bound will achieve obviously better performance with small sample size (e.g., $< 2000$) comparing with formulaic bounds. Finally, we validate our theoretical results by performing simulations on synthetic data sets.
Submission history
From: Akram Hussain Engr. [view email][v1] Wed, 22 Sep 2021 10:41:18 UTC (15,150 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.