Computer Science > Machine Learning
[Submitted on 21 Aug 2021 (v1), last revised 27 Sep 2023 (this version, v2)]
Title:Unsupervised Movement Detection in Indoor Positioning Systems of Production Halls
View PDFAbstract:Consider indoor positioning systems (IPS) in production halls where objects equipped with sensors send their current position. Beside its large volume, the analyzation of the resulting raw data is challenging due to the susceptibility towards noise. Reasons are accuracy issues and undesired awakenings of sensors that occur due to the dynamics of logistic processes (e.g.~vibrations of passing forklifts). We propose a tailor-made statistical procedure for these challenges and combine visual analytics with movement detection. Contrary to common stay-point algorithms, we do not only distinguish between stops and moves, but also consider undesired awakenings. This leads to a more detailed interpretation scheme offering usages for online (e.g.~monitoring of orders) and offline applications (e.g.~detection of problematic areas). The approach does not require other information than the raw IPS output and enables an ad-hoc analysis. We underline our findings in an extensive case study with real IPS data of our industry partner.
Submission history
From: Jonathan Flossdorf [view email][v1] Sat, 21 Aug 2021 10:30:09 UTC (1,341 KB)
[v2] Wed, 27 Sep 2023 12:03:04 UTC (2,385 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.