Computer Science > Machine Learning
[Submitted on 22 Sep 2021 (v1), last revised 23 Sep 2021 (this version, v2)]
Title:Exploring Adversarial Examples for Efficient Active Learning in Machine Learning Classifiers
View PDFAbstract:Machine learning researchers have long noticed the phenomenon that the model training process will be more effective and efficient when the training samples are densely sampled around the underlying decision boundary. While this observation has already been widely applied in a range of machine learning security techniques, it lacks theoretical analyses of the correctness of the observation. To address this challenge, we first add particular perturbation to original training examples using adversarial attack methods so that the generated examples could lie approximately on the decision boundary of the ML classifiers. We then investigate the connections between active learning and these particular training examples. Through analyzing various representative classifiers such as k-NN classifiers, kernel methods as well as deep neural networks, we establish a theoretical foundation for the observation. As a result, our theoretical proofs provide support to more efficient active learning methods with the help of adversarial examples, contrary to previous works where adversarial examples are often used as destructive solutions. Experimental results show that the established theoretical foundation will guide better active learning strategies based on adversarial examples.
Submission history
From: Honggang Yu [view email][v1] Wed, 22 Sep 2021 14:51:26 UTC (4,407 KB)
[v2] Thu, 23 Sep 2021 04:08:59 UTC (4,300 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.