Computer Science > Machine Learning
[Submitted on 22 Sep 2021]
Title:Improved Multi-label Classification with Frequent Label-set Mining and Association
View PDFAbstract:Multi-label (ML) data deals with multiple classes associated with individual samples at the same time. This leads to the co-occurrence of several classes repeatedly, which indicates some existing correlation among them. In this article, the correlation among classes has been explored to improve the classification performance of existing ML classifiers. A novel approach of frequent label-set mining has been proposed to extract these correlated classes from the label-sets of the data. Both co-presence (CP) and co-absence (CA) of classes have been taken into consideration. The rules mined from the ML data has been further used to incorporate class correlation information into existing ML classifiers. The soft scores generated by an ML classifier are modified through a novel approach using the CP-CA rules. A concept of certain and uncertain scores has been defined here, where the proposed method aims to improve the uncertain scores with the help of the certain scores and their corresponding CP-CA rules. This has been experimentally analysed on ten ML datasets for three ML existing classifiers which shows substantial improvement in their overall performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.