Quantum Physics
[Submitted on 22 Sep 2021]
Title:Quantifying nonlocality: how outperforming local quantum codes is expensive
View PDFAbstract:Quantum low-density parity-check (LDPC) codes are a promising avenue to reduce the cost of constructing scalable quantum circuits. However, it is unclear how to implement these codes in practice. Seminal results of Bravyi & Terhal, and Bravyi, Poulin & Terhal have shown that quantum LDPC codes implemented through local interactions obey restrictions on their dimension $k$ and distance $d$. Here we address the complementary question of how many long-range interactions are required to implement a quantum LDPC code with parameters $k$ and $d$. In particular, in 2D we show that a quantum LDPC with distance $n^{1/2 + \epsilon}$ code requires $\Omega(n^{1/2 + \epsilon})$ interactions of length $\widetilde{\Omega}(n^{\epsilon})$. Further a code satisfying $k \propto n$ with distance $d \propto n^\alpha$ requires $\widetilde{\Omega}(n)$ interactions of length $\widetilde{\Omega}(n^{\alpha/2})$. Our results are derived using bounds on quantum codes from graph metrics. As an application of these results, we consider a model called a stacked architecture, which has previously been considered as a potential way to implement quantum LDPC codes. In this model, although most interactions are local, a few of them are allowed to be very long. We prove that limited long-range connectivity implies quantitative bounds on the distance and code dimension.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.