Nonlinear Sciences > Chaotic Dynamics
[Submitted on 22 Sep 2021 (v1), last revised 17 Nov 2021 (this version, v2)]
Title:Chaos in self-gravitating many-body systems: Lyapunov time dependence of $N$ and the influence of general relativity
View PDFAbstract:In self-gravitating $N$-body systems, small perturbations introduced at the start, or infinitesimal errors that are produced by the numerical integrator or are due to limited precision in the computer, grow exponentially with time. For Newton's gravity, we confirm earlier results that for relatively homogeneous systems, this rate of growth per crossing time increases with $N$ up to $N \sim 30$, but that for larger systems, the growth rate has a weaker scaling with $N$. For concentrated systems, however, the rate of exponential growth continues to scale with $N$. In relativistic self-gravitating systems, the rate of growth is almost independent of $N$. This effect, however, is only noticeable when the system's mean velocity approaches the speed of light to within three orders of magnitude. The chaotic behavior of systems with more than a dozen bodies for the usually adopted approximation of only solving the pairwise interactions in the Einstein-Infeld-Hoffmann equation of motion is qualitatively different than when the interaction terms (or cross terms) are taken into account. This result provides a strong motivation for follow-up studies on the microscopic effect of general relativity on orbital chaos, and on the influence of higher-order cross-terms in the Taylor-series expansion of the Einstein-Infeld-Hoffmann equations of motion.
Submission history
From: Simon Portegies Zwart [view email][v1] Wed, 22 Sep 2021 20:00:17 UTC (5,040 KB)
[v2] Wed, 17 Nov 2021 08:57:42 UTC (4,927 KB)
Current browse context:
nlin.CD
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.