Statistics > Machine Learning
[Submitted on 23 Sep 2021 (v1), last revised 25 Jul 2022 (this version, v2)]
Title:Clustering performance analysis using a new correlation-based cluster validity index
View PDFAbstract:There are various cluster validity indices used for evaluating clustering results. One of the main objectives of using these indices is to seek the optimal unknown number of clusters. Some indices work well for clusters with different densities, sizes, and shapes. Yet, one shared weakness of those validity indices is that they often provide only one optimal number of clusters. That number is unknown in real-world problems, and there might be more than one possible option. We develop a new cluster validity index based on a correlation between an actual distance between a pair of data points and a centroid distance of clusters that the two points occupy. Our proposed index constantly yields several local peaks and overcomes the previously stated weakness. Several experiments in different scenarios, including UCI real-world data sets, have been conducted to compare the proposed validity index with several well-known ones. An R package related to this new index called NCvalid is available at this https URL.
Submission history
From: Nathakhun Wiroonsri [view email][v1] Thu, 23 Sep 2021 06:59:41 UTC (2,176 KB)
[v2] Mon, 25 Jul 2022 06:41:09 UTC (3,343 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.