Computer Science > Machine Learning
[Submitted on 23 Sep 2021 (v1), last revised 6 Feb 2022 (this version, v3)]
Title:Predicting the Timing of Camera Movements From the Kinematics of Instruments in Robotic-Assisted Surgery Using Artificial Neural Networks
View PDFAbstract:Robotic-assisted surgeries benefit both surgeons and patients, however, surgeons frequently need to adjust the endoscopic camera to achieve good viewpoints. Simultaneously controlling the camera and the surgical instruments is impossible, and consequentially, these camera adjustments repeatedly interrupt the surgery. Autonomous camera control could help overcome this challenge, but most existing systems are reactive, e.g., by having the camera follow the surgical instruments. We propose a predictive approach for anticipating when camera movements will occur using artificial neural networks. We used the kinematic data of the surgical instruments, which were recorded during robotic-assisted surgical training on porcine models. We split the data into segments, and labeled each either as a segment that immediately precedes a camera movement, or one that does not. Due to the large class imbalance, we trained an ensemble of networks, each on a balanced sub-set of the training data. We found that the instruments' kinematic data can be used to predict when camera movements will occur, and evaluated the performance on different segment durations and ensemble sizes. We also studied how much in advance an upcoming camera movement can be predicted, and found that predicting a camera movement 0.25, 0.5, and 1 second before they occurred achieved 98%, 94%, and 84% accuracy relative to the prediction of an imminent camera movement. This indicates that camera movement events can be predicted early enough to leave time for computing and executing an autonomous camera movement and suggests that an autonomous camera controller for RAMIS may one day be feasible.
Submission history
From: Hanna Kossowsky [view email][v1] Thu, 23 Sep 2021 07:57:27 UTC (485 KB)
[v2] Sun, 19 Dec 2021 15:57:55 UTC (515 KB)
[v3] Sun, 6 Feb 2022 15:19:35 UTC (545 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.