Computer Science > Machine Learning
[Submitted on 23 Sep 2021]
Title:Unbiased Loss Functions for Multilabel Classification with Missing Labels
View PDFAbstract:This paper considers binary and multilabel classification problems in a setting where labels are missing independently and with a known rate. Missing labels are a ubiquitous phenomenon in extreme multi-label classification (XMC) tasks, such as matching Wikipedia articles to a small subset out of the hundreds of thousands of possible tags, where no human annotator can possibly check the validity of all the negative samples. For this reason, propensity-scored precision -- an unbiased estimate for precision-at-k under a known noise model -- has become one of the standard metrics in XMC. Few methods take this problem into account already during the training phase, and all are limited to loss functions that can be decomposed into a sum of contributions from each individual label. A typical approach to training is to reduce the multilabel problem into a series of binary or multiclass problems, and it has been shown that if the surrogate task should be consistent for optimizing recall, the resulting loss function is not decomposable over labels. Therefore, this paper derives the unique unbiased estimators for the different multilabel reductions, including the non-decomposable ones. These estimators suffer from increased variance and may lead to ill-posed optimization problems, which we address by switching to convex upper-bounds. The theoretical considerations are further supplemented by an experimental study showing that the switch to unbiased estimators significantly alters the bias-variance trade-off and may thus require stronger regularization, which in some cases can negate the benefits of unbiased estimation.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.