Computer Science > Machine Learning
[Submitted on 23 Sep 2021 (v1), last revised 6 Jul 2022 (this version, v3)]
Title:Fast Density Estimation for Density-based Clustering Methods
View PDFAbstract:Density-based clustering algorithms are widely used for discovering clusters in pattern recognition and machine learning since they can deal with non-hyperspherical clusters and are robustness to handle outliers. However, the runtime of density-based algorithms are heavily dominated by finding fixed-radius near neighbors and calculating the density, which is time-consuming. Meanwhile, the traditional acceleration methods using indexing technique such as KD tree is not effective in processing high-dimensional data. In this paper, we propose a fast region query algorithm named fast principal component analysis pruning (called FPCAP) with the help of the fast principal component analysis technique in conjunction with geometric information provided by principal attributes of the data, which can process high-dimensional data and be easily applied to density-based methods to prune unnecessary distance calculations when finding neighbors and estimating densities. As an application in density-based clustering methods, FPCAP method was combined with the Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm. And then, an improved DBSCAN (called IDBSCAN) is obtained, which preserves the advantage of DBSCAN and meanwhile, greatly reduces the computation of redundant distances. Experiments on seven benchmark datasets demonstrate that the proposed algorithm improves the computational efficiency significantly.
Submission history
From: Difei Cheng [view email][v1] Thu, 23 Sep 2021 13:59:42 UTC (1,821 KB)
[v2] Wed, 23 Feb 2022 09:01:51 UTC (5,195 KB)
[v3] Wed, 6 Jul 2022 02:58:28 UTC (1,242 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.