Computer Science > Cryptography and Security
[Submitted on 23 Sep 2021]
Title:LSTM Hyper-Parameter Selection for Malware Detection: Interaction Effects and Hierarchical Selection Approach
View PDFAbstract:Long-Short-Term-Memory (LSTM) networks have shown great promise in artificial intelligence (AI) based language modeling. Recently, LSTM networks have also become popular for designing AI-based Intrusion Detection Systems (IDS). However, its applicability in IDS is studied largely in the default settings as used in language models. Whereas security applications offer distinct conditions and hence warrant careful consideration while applying such recurrent networks. Therefore, we conducted one of the most exhaustive works on LSTM hyper-parameters for IDS and experimented with approx. 150 LSTM configurations to determine its hyper-parameters relative importance, interaction effects, and optimal selection approach for designing an IDS. We conducted multiple analyses of the results of these experiments and empirically controlled for the interaction effects of different hyper-parameters covariate levels. We found that for security applications, especially for designing an IDS, neither similar relative importance as applicable to language models is valid, nor is the standard linear method for hyper-parameter selection ideal. We ascertained that the interaction effect plays a crucial role in determining the relative importance of hyper-parameters. We also discovered that after controlling for the interaction effect, the correct relative importance for LSTMs for an IDS is batch-size, followed by dropout ratio and padding. The findings are significant because when LSTM was first used for language models, the focus had mostly been on increasing the number of layers to enhance performance.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.