Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Sep 2021 (v1), last revised 24 May 2022 (this version, v3)]
Title:How much human-like visual experience do current self-supervised learning algorithms need in order to achieve human-level object recognition?
View PDFAbstract:This paper addresses a fundamental question: how good are our current self-supervised visual representation learning algorithms relative to humans? More concretely, how much "human-like" natural visual experience would these algorithms need in order to reach human-level performance in a complex, realistic visual object recognition task such as ImageNet? Using a scaling experiment, here we estimate that the answer is several orders of magnitude longer than a human lifetime: typically on the order of a million to a billion years of natural visual experience (depending on the algorithm used). We obtain even larger estimates for achieving human-level performance in ImageNet-derived robustness benchmarks. The exact values of these estimates are sensitive to some underlying assumptions, however even in the most optimistic scenarios they remain orders of magnitude larger than a human lifetime. We discuss the main caveats surrounding our estimates and the implications of these surprising results.
Submission history
From: Emin Orhan [view email][v1] Thu, 23 Sep 2021 17:45:36 UTC (203 KB)
[v2] Mon, 27 Sep 2021 15:03:56 UTC (204 KB)
[v3] Tue, 24 May 2022 17:53:25 UTC (784 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.