Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Sep 2021]
Title:MARMOT: A Deep Learning Framework for Constructing Multimodal Representations for Vision-and-Language Tasks
View PDFAbstract:Political activity on social media presents a data-rich window into political behavior, but the vast amount of data means that almost all content analyses of social media require a data labeling step. However, most automated machine classification methods ignore the multimodality of posted content, focusing either on text or images. State-of-the-art vision-and-language models are unusable for most political science research: they require all observations to have both image and text and require computationally expensive pretraining. This paper proposes a novel vision-and-language framework called multimodal representations using modality translation (MARMOT). MARMOT presents two methodological contributions: it can construct representations for observations missing image or text, and it replaces the computationally expensive pretraining with modality translation. MARMOT outperforms an ensemble text-only classifier in 19 of 20 categories in multilabel classifications of tweets reporting election incidents during the 2016 U.S. general election. Moreover, MARMOT shows significant improvements over the results of benchmark multimodal models on the Hateful Memes dataset, improving the best result set by VisualBERT in terms of accuracy from 0.6473 to 0.6760 and area under the receiver operating characteristic curve (AUC) from 0.7141 to 0.7530.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.