Computer Science > Cryptography and Security
[Submitted on 23 Sep 2021]
Title:ADVERSARIALuscator: An Adversarial-DRL Based Obfuscator and Metamorphic Malware SwarmGenerator
View PDFAbstract:Advanced metamorphic malware and ransomware, by using obfuscation, could alter their internal structure with every attack. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. It is challenging to obtain training data for such evasive malware. Therefore, in this paper, we present ADVERSARIALuscator, a novel system that uses specialized Adversarial-DRL to obfuscate malware at the opcode level and create multiple metamorphic instances of the same. To the best of our knowledge, ADVERSARIALuscator is the first-ever system that adopts the Markov Decision Process-based approach to convert and find a solution to the problem of creating individual obfuscations at the opcode level. This is important as the machine language level is the least at which functionality could be preserved so as to mimic an actual attack effectively. ADVERSARIALuscator is also the first-ever system to use efficient continuous action control capable of deep reinforcement learning agents like the Proximal Policy Optimization in the area of cyber security. Experimental results indicate that ADVERSARIALuscator could raise the metamorphic probability of a corpus of malware by >0.45. Additionally, more than 33% of metamorphic instances generated by ADVERSARIALuscator were able to evade the most potent IDS. If such malware could intrude even into any of the IoT networks, then even if the original malware instance gets detected, by that time it can still infect the entire network. Hence ADVERSARIALuscator could be used to generate data representative of a swarm of very potent and coordinated AI-based metamorphic malware attacks. The so generated data and simulations could be used to bolster the defenses of an IDS against an actual AI-based metamorphic attack from advanced malware and ransomware.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.