Computer Science > Machine Learning
[Submitted on 23 Sep 2021 (v1), last revised 7 Dec 2021 (this version, v2)]
Title:Text Ranking and Classification using Data Compression
View PDFAbstract:A well-known but rarely used approach to text categorization uses conditional entropy estimates computed using data compression tools. Text affinity scores derived from compressed sizes can be used for classification and ranking tasks, but their success depends on the compression tools used. We use the Zstandard compressor and strengthen these ideas in several ways, calling the resulting language-agnostic technique Zest. In applications, this approach simplifies configuration, avoiding careful feature extraction and large ML models. Our ablation studies confirm the value of individual enhancements we introduce. We show that Zest complements and can compete with language-specific multidimensional content embeddings in production, but cannot outperform other counting methods on public datasets.
Submission history
From: Nitya Kasturi [view email][v1] Thu, 23 Sep 2021 18:13:17 UTC (92 KB)
[v2] Tue, 7 Dec 2021 15:13:19 UTC (91 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.