Computer Science > Machine Learning
[Submitted on 23 Sep 2021 (v1), last revised 4 May 2022 (this version, v3)]
Title:Deep Reinforcement Learning-Based Long-Range Autonomous Valet Parking for Smart Cities
View PDFAbstract:In this paper, to reduce the congestion rate at the city center and increase the quality of experience (QoE) of each user, the framework of long-range autonomous valet parking (LAVP) is presented, where an Autonomous Vehicle (AV) is deployed in the city, which can pick up, drop off users at their required spots, and then drive to the car park out of city center autonomously. In this framework, we aim to minimize the overall distance of the AV, while guarantee all users are served, i.e., picking up, and dropping off users at their required spots through optimizing the path planning of the AV and number of serving time slots. To this end, we first propose a learning based algorithm, which is named as Double-Layer Ant Colony Optimization (DL-ACO) algorithm to solve the above problem in an iterative way. Then, to make the real-time decision, while consider the dynamic environment (i.e., the AV may pick up and drop off users from different locations), we further present a deep reinforcement learning (DRL) based algorithm, which is known as deep Q network (DQN). The experimental results show that the DL-ACO and DQN-based algorithms both achieve the considerable performance.
Submission history
From: Muhammad Khalid Dr [view email][v1] Thu, 23 Sep 2021 21:55:12 UTC (594 KB)
[v2] Thu, 17 Mar 2022 14:58:09 UTC (609 KB)
[v3] Wed, 4 May 2022 14:37:45 UTC (1,775 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.