Statistics > Machine Learning
[Submitted on 22 Sep 2021 (v1), last revised 15 Feb 2022 (this version, v3)]
Title:Safe Policy Learning through Extrapolation: Application to Pre-trial Risk Assessment
View PDFAbstract:Algorithmic recommendations and decisions have become ubiquitous in today's society. Many of these and other data-driven policies, especially in the realm of public policy, are based on known, deterministic rules to ensure their transparency and interpretability. For example, algorithmic pre-trial risk assessments, which serve as our motivating application, provide relatively simple, deterministic classification scores and recommendations to help judges make release decisions. How can we use the data based on existing deterministic policies to learn new and better policies? Unfortunately, prior methods for policy learning are not applicable because they require existing policies to be stochastic rather than deterministic. We develop a robust optimization approach that partially identifies the expected utility of a policy, and then finds an optimal policy by minimizing the worst-case regret. The resulting policy is conservative but has a statistical safety guarantee, allowing the policy-maker to limit the probability of producing a worse outcome than the existing policy. We extend this approach to common and important settings where humans make decisions with the aid of algorithmic recommendations. Lastly, we apply the proposed methodology to a unique field experiment on pre-trial risk assessment instruments. We derive new classification and recommendation rules that retain the transparency and interpretability of the existing instrument while potentially leading to better overall outcomes at a lower cost.
Submission history
From: Eli Ben-Michael [view email][v1] Wed, 22 Sep 2021 00:52:03 UTC (192 KB)
[v2] Tue, 14 Dec 2021 16:45:39 UTC (215 KB)
[v3] Tue, 15 Feb 2022 21:08:06 UTC (520 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.