Computer Science > Machine Learning
[Submitted on 24 Sep 2021]
Title:Online Adaptation of Parameters using GRU-based Neural Network with BO for Accurate Driving Model
View PDFAbstract:Testing self-driving cars in different areas requires surrounding cars with accordingly different driving styles such as aggressive or conservative styles. A method of numerically measuring and differentiating human driving styles to create a virtual driver with a certain driving style is in demand. However, most methods for measuring human driving styles require thresholds or labels to classify the driving styles, and some require additional questionnaires for drivers about their driving attitude. These limitations are not suitable for creating a large virtual testing environment. Driving models (DMs) simulate human driving styles. Calibrating a DM makes the simulated driving behavior closer to human-driving behavior, and enable the simulation of human-driving cars. Conventional DM-calibrating methods do not take into account that the parameters in a DM vary while driving. These "fixed" calibrating methods cannot reflect an actual interactive driving scenario. In this paper, we propose a DM-calibration method for measuring human driving styles to reproduce real car-following behavior more accurately. The method includes 1) an objective entropy weight method for measuring and clustering human driving styles, and 2) online adaption of DM parameters based on deep learning by combining Bayesian optimization (BO) and a gated recurrent unit neural network. We conducted experiments to evaluate the proposed method, and the results indicate that it can be easily used to measure human driver styles. The experiments also showed that we can calibrate a corresponding DM in a virtual testing environment with up to 26% more accuracy than with fixed calibration methods.
Submission history
From: Michiaki Tatsubori [view email][v1] Fri, 24 Sep 2021 03:07:12 UTC (699 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.