Computer Science > Computational Complexity
[Submitted on 24 Sep 2021 (v1), last revised 6 Jun 2024 (this version, v5)]
Title:Punctured Low-Bias Codes Behave Like Random Linear Codes
View PDF HTML (experimental)Abstract:Random linear codes are a workhorse in coding theory, and are used to show the existence of codes with the best known or even near-optimal trade-offs in many noise models. However, they have little structure besides linearity, and are not amenable to tractable error-correction algorithms.
In this work, we prove a general derandomization result applicable to random linear codes. Namely, in settings where the coding-theoretic property of interest is "local" (in the sense of forbidding certain bad configurations involving few vectors -- code distance and list-decodability being notable examples), one can replace random linear codes (RLCs) with a significantly derandomized variant with essentially no loss in parameters. Specifically, instead of randomly sampling coordinates of the (long) Hadamard code (which is an equivalent way to describe RLCs), one can randomly sample coordinates of any code with low bias. Over large alphabets, the low bias requirement can be weakened to just large distance. Furthermore, large distance suffices even with a small alphabet in order to match the current best known bounds for RLC list-decodability.
In particular, by virtue of our result, all current (and future) achievability bounds for list-decodability of random linear codes extend automatically to random puncturings of any low-bias (or large alphabet) "mother" code. We also show that our punctured codes emulate the behavior of RLCs on stochastic channels, thus giving a derandomization of RLCs in the context of achieving Shannon capacity as well. Thus, we have a randomness-efficient way to sample codes achieving capacity in both worst-case and stochastic settings that can further inherit algebraic or other algorithmically useful structural properties of the mother code.
Submission history
From: Jonathan Mosheiff [view email][v1] Fri, 24 Sep 2021 03:37:22 UTC (52 KB)
[v2] Mon, 8 Nov 2021 20:18:10 UTC (54 KB)
[v3] Mon, 4 Apr 2022 16:17:26 UTC (39 KB)
[v4] Tue, 13 Sep 2022 17:26:39 UTC (39 KB)
[v5] Thu, 6 Jun 2024 05:31:55 UTC (68 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.