Computer Science > Machine Learning
[Submitted on 24 Sep 2021]
Title:Adversarial Neural Trip Recommendation
View PDFAbstract:Trip recommender system, which targets at recommending a trip consisting of several ordered Points of Interest (POIs), has long been treated as an important application for many location-based services. Currently, most prior arts generate trips following pre-defined objectives based on constraint programming, which may fail to reflect the complex latent patterns hidden in the human mobility data. And most of these methods are usually difficult to respond in real time when the number of POIs is large. To that end, we propose an Adversarial Neural Trip Recommendation (ANT) framework to tackle the above challenges. First of all, we devise a novel attention-based encoder-decoder trip generator that can learn the correlations among POIs and generate well-designed trips under given constraints. Another novelty of ANT relies on an adversarial learning strategy integrating with reinforcement learning to guide the trip generator to produce high-quality trips. For this purpose, we introduce a discriminator, which distinguishes the generated trips from real-life trips taken by users, to provide reward signals to optimize the generator. Moreover, we devise a novel pre-train schema based on learning from demonstration, which speeds up the convergence to achieve a sufficient-and-efficient training process. Extensive experiments on four real-world datasets validate the effectiveness and efficiency of our proposed ANT framework, which demonstrates that ANT could remarkably outperform the state-of-the-art baselines with short response time.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.