Computer Science > Machine Learning
[Submitted on 24 Sep 2021]
Title:Learning to maximize global influence from local observations
View PDFAbstract:We study a family online influence maximization problems where in a sequence of rounds $t=1,\ldots,T$, a decision maker selects one from a large number of agents with the goal of maximizing influence. Upon choosing an agent, the decision maker shares a piece of information with the agent, which information then spreads in an unobserved network over which the agents communicate. The goal of the decision maker is to select the sequence of agents in a way that the total number of influenced nodes in the network. In this work, we consider a scenario where the networks are generated independently for each $t$ according to some fixed but unknown distribution, so that the set of influenced nodes corresponds to the connected component of the random graph containing the vertex corresponding to the selected agent. Furthermore, we assume that the decision maker only has access to limited feedback: instead of making the unrealistic assumption that the entire network is observable, we suppose that the available feedback is generated based on a small neighborhood of the selected vertex. Our results show that such partial local observations can be sufficient for maximizing global influence. We model the underlying random graph as a sparse inhomogeneous Erdős--Rényi graph, and study three specific families of random graph models in detail: stochastic block models, Chung--Lu models and Kronecker random graphs. We show that in these cases one may learn to maximize influence by merely observing the degree of the selected vertex in the generated random graph. We propose sequential learning algorithms that aim at maximizing influence, and provide their theoretical analysis in both the subcritical and supercritical regimes of all considered models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.