Computer Science > Information Theory
[Submitted on 24 Sep 2021 (v1), last revised 2 Dec 2022 (this version, v2)]
Title:List-GRAND: A practical way to achieve Maximum Likelihood Decoding
View PDFAbstract:Guessing Random Additive Noise Decoding (GRAND) is a recently proposed universal Maximum Likelihood (ML) decoder for short-length and high-rate linear block-codes. Soft-GRAND (SGRAND) is a prominent soft-input GRAND variant, outperforming the other GRAND variants in decoding performance; nevertheless, SGRAND is not suitable for parallel hardware implementation. Ordered Reliability Bits-GRAND (ORBGRAND) is another soft-input GRAND variant that is suitable for parallel hardware implementation, however it has lower decoding performance than SGRAND. In this paper, we propose List-GRAND (LGRAND), a technique for enhancing the decoding performance of ORBGRAND to match the ML decoding performance of SGRAND. Numerical simulation results show that LGRAND enhances ORBGRAND's decoding performance by $0.5-0.75$ dB for channel-codes of various classes at a target FER of $10^{-7}$. For linear block codes of length $127/128$ and different code-rates, LGRAND's VLSI implementation can achieve an average information throughput of $47.27-51.36$ Gbps. In comparison to ORBGRAND's VLSI implementation, the proposed LGRAND hardware has a $4.84\%$ area overhead.
Submission history
From: Syed Mohsin Abbas Dr. [view email][v1] Fri, 24 Sep 2021 22:54:42 UTC (835 KB)
[v2] Fri, 2 Dec 2022 05:58:11 UTC (866 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.