Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Sep 2021 (v1), last revised 11 Jul 2022 (this version, v2)]
Title:Tensor Full Feature Measure and Its Nonconvex Relaxation Applications to Tensor Recovery
View PDFAbstract:Tensor sparse modeling as a promising approach, in the whole of science and engineering has been a huge success. As is known to all, various data in practical application are often generated by multiple factors, so the use of tensors to represent the data containing the internal structure of multiple factors came into being. However, different from the matrix case, constructing reasonable sparse measure of tensor is a relatively difficult and very important task. Therefore, in this paper, we propose a new tensor sparsity measure called Tensor Full Feature Measure (FFM). It can simultaneously describe the feature information of each dimension of the tensor and the related features between two dimensions, and connect the Tucker rank with the tensor tube rank. This measurement method can describe the sparse features of the tensor more comprehensively. On this basis, we establish its non-convex relaxation, and apply FFM to low rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA). LRTC and TRPCA models based on FFM are proposed, and two efficient Alternating Direction Multiplier Method (ADMM) algorithms are developed to solve the proposed model. A variety of real numerical experiments substantiate the superiority of the proposed methods beyond state-of-the-arts.
Submission history
From: HongBing Zhang [view email][v1] Sat, 25 Sep 2021 01:44:34 UTC (30,022 KB)
[v2] Mon, 11 Jul 2022 08:32:27 UTC (34,376 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.