Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Sep 2021]
Title:An embarrassingly simple comparison of machine learning algorithms for indoor scene classification
View PDFAbstract:With the emergence of autonomous indoor robots, the computer vision task of indoor scene recognition has gained the spotlight. Indoor scene recognition is a challenging problem in computer vision that relies on local and global features in a scene. This study aims to compare the performance of five machine learning algorithms on the task of indoor scene classification to identify the pros and cons of each classifier. It also provides a comparison of low latency feature extractors versus enormous feature extractors to understand the performance effects. Finally, a simple MnasNet based indoor classification system is proposed, which can achieve 72% accuracy at 23 ms latency.
Submission history
From: Bhanuka Manesha Samarasekara Vitharana Gamage [view email][v1] Sat, 25 Sep 2021 02:26:52 UTC (1,616 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.