Computer Science > Machine Learning
[Submitted on 25 Sep 2021 (v1), last revised 10 Feb 2023 (this version, v5)]
Title:Model reduction for the material point method via an implicit neural representation of the deformation map
View PDFAbstract:This work proposes a model-reduction approach for the material point method on nonlinear manifolds. Our technique approximates the $\textit{kinematics}$ by approximating the deformation map using an implicit neural representation that restricts deformation trajectories to reside on a low-dimensional manifold. By explicitly approximating the deformation map, its spatiotemporal gradients -- in particular the deformation gradient and the velocity -- can be computed via analytical differentiation. In contrast to typical model-reduction techniques that construct a linear or nonlinear manifold to approximate the (finite number of) degrees of freedom characterizing a given spatial discretization, the use of an implicit neural representation enables the proposed method to approximate the $\textit{continuous}$ deformation map. This allows the kinematic approximation to remain agnostic to the discretization. Consequently, the technique supports dynamic discretizations -- including resolution changes -- during the course of the online reduced-order-model simulation.
To generate $\textit{dynamics}$ for the generalized coordinates, we propose a family of projection techniques. At each time step, these techniques: (1) Calculate full-space kinematics at quadrature points, (2) Calculate the full-space dynamics for a subset of `sample' material points, and (3) Calculate the reduced-space dynamics by projecting the updated full-space position and velocity onto the low-dimensional manifold and tangent space, respectively. We achieve significant computational speedup via hyper-reduction that ensures all three steps execute on only a small subset of the problem's spatial domain. Large-scale numerical examples with millions of material points illustrate the method's ability to gain an order of magnitude computational-cost saving -- indeed $\textit{real-time simulations}$ -- with negligible errors.
Submission history
From: Peter Yichen Chen [view email][v1] Sat, 25 Sep 2021 15:45:14 UTC (33,553 KB)
[v2] Tue, 19 Apr 2022 13:00:15 UTC (46,421 KB)
[v3] Wed, 11 Jan 2023 19:48:38 UTC (14,238 KB)
[v4] Tue, 31 Jan 2023 02:44:27 UTC (14,239 KB)
[v5] Fri, 10 Feb 2023 04:07:54 UTC (14,239 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.