Electrical Engineering and Systems Science > Signal Processing
[Submitted on 25 Sep 2021]
Title:Channel State Information Based Localization with Deep Learning
View PDFAbstract:Localization is one of the most important problems in various fields such as robotics and wireless communications. For instance, Unmanned Aerial Vehicles (UAVs) require the information of the position precisely for an adequate control strategy. This problem is handled very efficiently with integrated GPS units for outdoor applications. However, indoor applications require special treatment due to the unavailability of GPS signals. Another aspect of mobile robots such as UAVs is that there is constant wireless communication between the mobile robot and a computational unit. This communication is mainly done for obtaining telemetry information or computation of control actions directly. The responsible integrated units for this transmission are commercial wireless communication chipsets. These units on the receiver side are responsible for getting rid of the diverse effects of the communication channel with various mathematical techniques. These techniques mainly require the Channel State Information (CSI) of the current channel to compensate the channel itself. After the compensation, the chipset has nothing to do with CSI. However, the locations of both the transmitter and receiver have a direct impact on CSI. Even though CSI contains such rich information about the environment, the accessibility of these data is blocked by the commercial wireless chipsets since they are manufactured to provide only the processed information data bits to the user. However, with the IEEE 802.11n standardization, certain chipsets provide access to CSI. Therefore, CSI data became processible and integrable to localization schemes. In this project, a test environment was constructed for the localization task. Two routers with proper chipsets were assigned as transmitter and receiver. They were operationalized for the CSI data collection. Lastly, these data were processed with various deep learning models.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.