Computer Science > Machine Learning
[Submitted on 25 Sep 2021 (v1), last revised 3 Apr 2023 (this version, v2)]
Title:Communication-Efficient Federated Linear and Deep Generalized Canonical Correlation Analysis
View PDFAbstract:Classic and deep generalized canonical correlation analysis (GCCA) algorithms seek low-dimensional common representations of data entities from multiple ``views'' (e.g., audio and image) using linear transformations and neural networks, respectively. When the views are acquired and stored at different computing agents (e.g., organizations and edge devices) and data sharing is undesired due to privacy or communication cost considerations, federated learning-based GCCA is well-motivated. In federated learning, the views are kept locally at the agents and only derived, limited information exchange with a central server is allowed. However, applying existing GCCA algorithms onto such federated learning settings may incur prohibitively high communication overhead. This work puts forth a communication-efficient federated learning framework for both linear and deep GCCA under the maximum variance (MAX-VAR) formulation. The overhead issue is addressed by aggressively compressing (via quantization) the exchanging information between the computing agents and a central controller. Compared to the unquantized version, our empirical study shows that the proposed algorithm enjoys a substantial reduction of communication overheads with virtually no loss in accuracy and convergence speed. Rigorous convergence analyses are also presented, which is a nontrivial effort. Generic federated optimization results do not cover the special problem structure of GCCA. Our result shows that the proposed algorithms for both linear and deep GCCA converge to critical points at a sublinear rate, even under heavy quantization and stochastic approximations. In addition, in the linear MAX-VAR case, the quantized algorithm approaches a global optimum in a geometric rate under reasonable conditions. Synthetic and real-data experiments are used to showcase the effectiveness of the proposed approach.
Submission history
From: Sagar Shrestha [view email][v1] Sat, 25 Sep 2021 16:43:10 UTC (3,539 KB)
[v2] Mon, 3 Apr 2023 19:17:47 UTC (1,719 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.