Computer Science > Machine Learning
[Submitted on 26 Sep 2021]
Title:Generalized multiscale feature extraction for remaining useful life prediction of bearings with generative adversarial networks
View PDFAbstract:Bearing is a key component in industrial machinery and its failure may lead to unwanted downtime and economic loss. Hence, it is necessary to predict the remaining useful life (RUL) of bearings. Conventional data-driven approaches of RUL prediction require expert domain knowledge for manual feature extraction and may suffer from data distribution discrepancy between training and test data. In this study, we propose a novel generalized multiscale feature extraction method with generative adversarial networks. The adversarial training learns the distribution of training data from different bearings and is introduced for health stage division and RUL prediction. To capture the sequence feature from a one-dimensional vibration signal, we adapt a U-Net architecture that reconstructs features to process them with multiscale layers in the generator of the adversarial network. To validate the proposed method, comprehensive experiments on two rotating machinery datasets have been conducted to predict the RUL. The experimental results show that the proposed feature extraction method can effectively predict the RUL and outperforms the conventional RUL prediction approaches based on deep neural networks. The implementation code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.