Computer Science > Machine Learning
[Submitted on 26 Sep 2021]
Title:MixNN: Protection of Federated Learning Against Inference Attacks by Mixing Neural Network Layers
View PDFAbstract:Machine Learning (ML) has emerged as a core technology to provide learning models to perform complex tasks. Boosted by Machine Learning as a Service (MLaaS), the number of applications relying on ML capabilities is ever increasing. However, ML models are the source of different privacy violations through passive or active attacks from different entities. In this paper, we present MixNN a proxy-based privacy-preserving system for federated learning to protect the privacy of participants against a curious or malicious aggregation server trying to infer sensitive attributes. MixNN receives the model updates from participants and mixes layers between participants before sending the mixed updates to the aggregation server. This mixing strategy drastically reduces privacy without any trade-off with utility. Indeed, mixing the updates of the model has no impact on the result of the aggregation of the updates computed by the server. We experimentally evaluate MixNN and design a new attribute inference attack, Sim, exploiting the privacy vulnerability of SGD algorithm to quantify privacy leakage in different settings (i.e., the aggregation server can conduct a passive or an active attack). We show that MixNN significantly limits the attribute inference compared to a baseline using noisy gradient (well known to damage the utility) while keeping the same level of utility as classic federated learning.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.