Physics > Chemical Physics
[Submitted on 26 Sep 2021 (v1), last revised 25 Jan 2022 (this version, v2)]
Title:Autoregressive neural-network wavefunctions for ab initio quantum chemistry
View PDFAbstract:In recent years, neural network quantum states (NNQS) have emerged as powerful tools for the study of quantum many-body systems. Electronic structure calculations are one such canonical many-body problem that have attracted significant research efforts spanning multiple decades, whilst only recently being attempted with NNQS. However, the complex non-local interactions and high sample complexity are significant challenges that call for bespoke solutions. Here, we parameterise the electronic wavefunction with a novel autoregressive neural network (ARN) that permits highly efficient and scalable sampling, whilst also embedding physical priors reflecting the structure of molecular systems without sacrificing expressibility. This allows us to perform electronic structure calculations on molecules with up to 30 spin-orbitals -- at least an order of magnitude more Slater determinants than previous applications of conventional NNQS -- and we find that our ansatz can outperform the de-facto gold-standard coupled cluster methods even in the presence of strong quantum correlations. With a highly expressive neural network for which sampling is no longer a computational bottleneck, we conclude that the barriers to further scaling are not associated with the wavefunction ansatz itself, but rather are inherent to any variational Monte Carlo approach.
Submission history
From: Thomas Barrett Dr [view email][v1] Sun, 26 Sep 2021 13:44:41 UTC (458 KB)
[v2] Tue, 25 Jan 2022 19:32:27 UTC (331 KB)
Current browse context:
physics.chem-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.